Compartments module¶
- 
class 
fanc.architecture.compartments.ABCompartmentMatrix(file_name=None, mode='r', tmpdir=None)¶ Bases:
fanc.matrix.RegionMatrixTableClass representing O/E correlation matrix used to derive AB compartments.
You can generate an
ABCompartmentMatrixfrom a Hic object using thefrom_hic()class method.hic = fanc.load("path/to/file.hic") ab = ABCompartmentMatrix.from_hic(hic)
The
abobject can then be used to calculate compartmentalisation eigenvectors and A/B compartment assignments:ev = ab.eigenvector() domains = ab.domains()
For more robust A and B calls, you can use a genome file (FASTA) to orient the eigenvector so that regions with higher GC content on average get assigned positive EV values:
ev = ab.eigenvector(genome="path/to/genome.fa") domains = ab.domains(genome="path/to/genome.fa")
Finally, you can calculate an AB compertment enrichment profile using
profile, ev_cutoffs = ab.enrichment_profile(hic) # or with genome to orient the EV profile, ev_cutoffs = ab.enrichment_profile(hic, genome="path/to/genome.fa")
- 
class 
ChromosomeDescription¶ Bases:
tables.description.IsDescriptionDescription of the chromosomes in this object.
- 
class 
MaskDescription¶ Bases:
tables.description.IsDescription
- 
class 
RegionDescription¶ Bases:
tables.description.IsDescriptionDescription of a genomic region for PyTables Table
- 
add_contact(contact, *args, **kwargs)¶ Alias for
add_edge()- Parameters
 contact –
Edgeargs – Positional arguments passed to
_add_edge()kwargs – Keyword arguments passed to
_add_edge()
- 
add_contacts(contacts, *args, **kwargs)¶ Alias for
add_edges()
- 
add_edge(edge, check_nodes_exist=True, *args, **kwargs)¶ Add an edge / contact between two regions to this object.
- Parameters
 edge –
Edge, dict with at least the attributes source and sink, optionally weight, or a list of length 2 (source, sink) or 3 (source, sink, weight).check_nodes_exist – Make sure that there are nodes that match source and sink indexes
args – Positional arguments passed to
_add_edge()kwargs – Keyword arguments passed to
_add_edge()
- 
add_edge_from_dict(edge, *args, **kwargs)¶ Direct method to add an edge from dict input.
- Parameters
 edge – dict with at least the keys “source” and “sink”. Additional keys will be loaded as edge attributes
- 
add_edge_from_edge(edge, *args, **kwargs)¶ Direct method to add an edge from
Edgeinput.- Parameters
 edge –
Edge
- 
add_edge_from_list(edge, *args, **kwargs)¶ Direct method to add an edge from list or tuple input.
- Parameters
 edge – List or tuple. Should be of length 2 (source, sink) or 3 (source, sink, weight)
- 
add_edge_simple(source, sink, weight=None, *args, **kwargs)¶ Direct method to add an edge from
Edgeinput.- Parameters
 source – Source region index
sink – Sink region index
weight – Weight of the edge
- 
add_edges(edges, flush=True, *args, **kwargs)¶ Bulk-add edges from a list.
List items can be any of the supported edge types, list, tuple, dict, or
Edge. Repeatedly callsadd_edge(), so may be inefficient for large amounts of data.- Parameters
 edges – List (or iterator) of edges. See
add_edge()for details
- 
add_mask_description(name, description)¶ Add a mask description to the _mask table and return its ID.
- Parameters
 name (str) – name of the mask
description (str) – description of the mask
- Returns
 id of the mask
- Return type
 int
- 
add_region(region, *args, **kwargs)¶ Add a genomic region to this object.
This method offers some flexibility in the types of objects that can be loaded. See parameters for details.
- Parameters
 region – Can be a
GenomicRegion, a str in the form ‘<chromosome>:<start>-<end>[:<strand>], a dict with at least the fields ‘chromosome’, ‘start’, and ‘end’, optionally ‘ix’, or a list of length 3 (chromosome, start, end) or 4 (ix, chromosome, start, end).
- 
add_regions(regions, *args, **kwargs)¶ Bulk insert multiple genomic regions.
- Parameters
 regions – List (or any iterator) with objects that describe a genomic region. See
add_regionfor options.
- 
static 
bin_intervals(intervals, bins, interval_range=None, smoothing_window=None, nan_replacement=None, zero_to_nan=False)¶ Bin a given set of intervals into a fixed number of bins.
- Parameters
 intervals – iterator of tuples (start, end, score)
bins – Number of bins to divide the region into
interval_range – Optional. Tuple (start, end) in base pairs of range of interval to be binned. Useful if intervals argument does not cover to exact genomic range to be binned.
smoothing_window – Size of window (in bins) to smooth scores over
nan_replacement – NaN values in the scores will be replaced with this value
zero_to_nan – If True, will convert bins with score 0 to NaN
- Returns
 iterator of tuples: (start, end, score)
- 
static 
bin_intervals_equidistant(intervals, bin_size, interval_range=None, smoothing_window=None, nan_replacement=None, zero_to_nan=False)¶ Bin a given set of intervals into bins with a fixed size.
- Parameters
 intervals – iterator of tuples (start, end, score)
bin_size – Size of each bin in base pairs
interval_range – Optional. Tuple (start, end) in base pairs of range of interval to be binned. Useful if intervals argument does not cover to exact genomic range to be binned.
smoothing_window – Size of window (in bins) to smooth scores over
nan_replacement – NaN values in the scores will be replaced with this value
zero_to_nan – If True, will convert bins with score 0 to NaN
- Returns
 iterator of tuples: (start, end, score)
- 
property 
bin_size¶ Return the length of the first region in the dataset.
Assumes all bins have equal size.
- Returns
 int
- 
binned_regions(region=None, bins=None, bin_size=None, smoothing_window=None, nan_replacement=None, zero_to_nan=False, *args, **kwargs)¶ Same as region_intervals, but returns
GenomicRegionobjects instead of tuples.- Parameters
 region – String or class:~GenomicRegion object denoting the region to be binned
bins – Number of bins to divide the region into
bin_size – Size of each bin (alternative to bins argument)
smoothing_window – Size of window (in bins) to smooth scores over
nan_replacement – NaN values in the scores will be replaced with this value
zero_to_nan – If True, will convert bins with score 0 to NaN
args – Arguments passed to _region_intervals
kwargs – Keyword arguments passed to _region_intervals
- Returns
 iterator of
GenomicRegionobjects
- 
bins_to_distance(bins)¶ Convert fraction of bins to base pairs
- Parameters
 bins – float, fraction of bins
- Returns
 int, base pairs
- 
property 
chromosome_bins¶ Returns a dictionary of chromosomes and the start and end index of the bins they cover.
Returned list is range-compatible, i.e. chromosome bins [0,5] cover chromosomes 1, 2, 3, and 4, not 5.
- 
property 
chromosome_lengths¶ Returns a dictionary of chromosomes and their length in bp.
- 
chromosomes()¶ List all chromosomes in this regions table. :return: list of chromosome names.
- 
close(copy_tmp=True, remove_tmp=True)¶ Close this HDF5 file and run exit operations.
If file was opened with tmpdir in read-only mode: close file and delete temporary copy.
If file was opened with tmpdir in write or append mode: Replace original file with copy and delete copy.
- Parameters
 copy_tmp – If False, does not overwrite original with modified file.
remove_tmp – If False, does not delete temporary copy of file.
- 
distance_to_bins(distance)¶ Convert base pairs to fraction of bins.
- Parameters
 distance – distance in base pairs
- Returns
 float, distance as fraction of bin size
- 
domains(*args, **kwargs)¶ Get the AB domain regions of the compartment matrix.
This returns a
RegionWrapperobject, where you can iterate over the domains usingfor region in domains.regions: print(region.name) # A or B
- Parameters
 args – Positional arguments for
eigenvector()kwargs – Keyword arguments for
eigenvector()
- Returns
 A
RegionWrapperobject
- 
downsample(n, file_name=None)¶ Sample edges from this object.
Sampling is always done on uncorrected Hi-C matrices.
- Parameters
 n – Sample size or reference object. If n < 1 will be interpreted as a fraction of total reads in this object.
file_name – Output file name for down-sampled object.
- Returns
 RegionPairsTable
- 
edge_data(attribute, *args, **kwargs)¶ Iterate over specific edge attribute.
- Parameters
 attribute – Name of the attribute, e.g. “weight”
args – Positional arguments passed to
edges()kwargs – Keyword arguments passed to
edges()
- Returns
 iterator over edge attribute
- 
edge_subset(key=None, *args, **kwargs)¶ Get a subset of edges.
This is an alias for
edges().- Returns
 generator (
Edge)
- 
property 
edges¶ Iterate over contacts / edges.
edges()is the central function ofRegionPairsContainer. Here, we will use theHicimplementation for demonstration purposes, but the usage is exactly the same for all compatible objects implementingRegionPairsContainer, includingJuicerHicandCoolerHic.import fanc # file from FAN-C examples hic = fanc.load("output/hic/binned/fanc_example_1mb.hic")
We can easily find the number of edges in the sample
Hicobject:len(hic.edges) # 8695
When used in an iterator context,
edges()iterates over all edges in theRegionPairsContainer:for edge in hic.edges: # do something with edge print(edge) # 42--42; bias: 5.797788472650082e-05; sink_node: chr18:42000001-43000000; source_node: chr18:42000001-43000000; weight: 0.12291311562018173 # 24--28; bias: 6.496381719803623e-05; sink_node: chr18:28000001-29000000; source_node: chr18:24000001-25000000; weight: 0.025205961072838057 # 5--76; bias: 0.00010230955745211447; sink_node: chr18:76000001-77000000; source_node: chr18:5000001-6000000; weight: 0.00961709840049876 # 66--68; bias: 8.248432587969082e-05; sink_node: chr18:68000001-69000000; source_node: chr18:66000001-67000000; weight: 0.03876763316345468 # ...
Calling
edges()as a method has the same effect:# note the '()' for edge in hic.edges(): # do something with edge print(edge) # 42--42; bias: 5.797788472650082e-05; sink_node: chr18:42000001-43000000; source_node: chr18:42000001-43000000; weight: 0.12291311562018173 # 24--28; bias: 6.496381719803623e-05; sink_node: chr18:28000001-29000000; source_node: chr18:24000001-25000000; weight: 0.025205961072838057 # 5--76; bias: 0.00010230955745211447; sink_node: chr18:76000001-77000000; source_node: chr18:5000001-6000000; weight: 0.00961709840049876 # 66--68; bias: 8.248432587969082e-05; sink_node: chr18:68000001-69000000; source_node: chr18:66000001-67000000; weight: 0.03876763316345468 # ...
Rather than iterate over all edges in the object, we can select only a subset. If the key is a string or a
GenomicRegion, all non-zero edges connecting the region described by the key to any other region are returned. If the key is a tuple of strings orGenomicRegion, only edges between the two regions are returned.# select all edges between chromosome 19 # and any other region: for edge in hic.edges("chr19"): print(edge) # 49--106; bias: 0.00026372303696871666; sink_node: chr19:27000001-28000000; source_node: chr18:49000001-50000000; weight: 0.003692122517562033 # 6--82; bias: 0.00021923129703834945; sink_node: chr19:3000001-4000000; source_node: chr18:6000001-7000000; weight: 0.0008769251881533978 # 47--107; bias: 0.00012820949175399097; sink_node: chr19:28000001-29000000; source_node: chr18:47000001-48000000; weight: 0.0015385139010478917 # 38--112; bias: 0.0001493344481069762; sink_node: chr19:33000001-34000000; source_node: chr18:38000001-39000000; weight: 0.0005973377924279048 # ... # select all edges that are only on # chromosome 19 for edge in hic.edges(('chr19', 'chr19')): print(edge) # 90--116; bias: 0.00021173151730025176; sink_node: chr19:37000001-38000000; source_node: chr19:11000001-12000000; weight: 0.009104455243910825 # 135--135; bias: 0.00018003890596887822; sink_node: chr19:56000001-57000000; source_node: chr19:56000001-57000000; weight: 0.10028167062466517 # 123--123; bias: 0.00011063368998965993; sink_node: chr19:44000001-45000000; source_node: chr19:44000001-45000000; weight: 0.1386240135570439 # 92--93; bias: 0.00040851066434864896; sink_node: chr19:14000001-15000000; source_node: chr19:13000001-14000000; weight: 0.10090213409411629 # ... # select inter-chromosomal edges # between chromosomes 18 and 19 for edge in hic.edges(('chr18', 'chr19')): print(edge) # 49--106; bias: 0.00026372303696871666; sink_node: chr19:27000001-28000000; source_node: chr18:49000001-50000000; weight: 0.003692122517562033 # 6--82; bias: 0.00021923129703834945; sink_node: chr19:3000001-4000000; source_node: chr18:6000001-7000000; weight: 0.0008769251881533978 # 47--107; bias: 0.00012820949175399097; sink_node: chr19:28000001-29000000; source_node: chr18:47000001-48000000; weight: 0.0015385139010478917 # 38--112; bias: 0.0001493344481069762; sink_node: chr19:33000001-34000000; source_node: chr18:38000001-39000000; weight: 0.0005973377924279048 # ...
By default,
edges()will retrieve all edge attributes, which can be slow when iterating over a lot of edges. This is why all file-based FAN-CRegionPairsContainerobjects support lazy loading, where attributes are only read on demand.for edge in hic.edges('chr18', lazy=True): print(edge.source, edge.sink, edge.weight, edge) # 42 42 0.12291311562018173 <fanc.matrix.LazyEdge for row /edges/chrpair_0_0.row (Row), pointing to row #0> # 24 28 0.025205961072838057 <fanc.matrix.LazyEdge for row /edges/chrpair_0_0.row (Row), pointing to row #1> # 5 76 0.00961709840049876 <fanc.matrix.LazyEdge for row /edges/chrpair_0_0.row (Row), pointing to row #2> # 66 68 0.03876763316345468 <fanc.matrix.LazyEdge for row /edges/chrpair_0_0.row (Row), pointing to row #3> # ...
Warning
The lazy iterator reuses the
LazyEdgeobject in every iteration, and overwrites theLazyEdgeattributes. Therefore do not use lazy iterators if you need to store edge objects for later access. For example, the following code works as expectedlist(hic.edges()), with allEdgeobjects stored in the list, while this codelist(hic.edges(lazy=True))will result in a list of identicalLazyEdgeobjects. Always ensure you do all edge processing in the loop when working with lazy iterators!When working with normalised contact frequencies, such as obtained through matrix balancing in the example above,
edges()automatically returns normalised edge weights. In addition, thebiasattribute will (typically) have a value different from 1.When you are interested in the raw contact frequency, use the
norm=Falseparameter:for edge in hic.edges('chr18', lazy=True, norm=False): print(edge.source, edge.sink, edge.weight) # 42 42 2120.0 # 24 28 388.0 # 5 76 94.0 # 66 68 470.0 # ...
You can also choose to omit all intra- or inter-chromosomal edges using
intra_chromosomal=Falseorinter_chromosomal=False, respectively.- Returns
 Iterator over
Edgeor equivalent.
- 
edges_dict(*args, **kwargs)¶ Edges iterator with access by bracket notation.
This iterator always returns unnormalised edges.
- Returns
 dict or dict-like iterator
- 
eigenvector(sub_region=None, genome=None, eigenvector=0, per_chromosome=None, oe_per_chromosome=None, exclude_chromosomes=None, force=False)¶ Calculate the eigenvector (EV) of this AB matrix.
- Parameters
 sub_region – Optional region string to only output the EV of that region.
genome – A
Genomeobject or path to a FASTA file. Used to orient EV value signs so that the “A” compartment corresponds to the regions with higher GC content. It is recommended to make use of this, as otherwise the sign of the EV is arbitrary and will not allow for between-sample comparisons.eigenvector – Index of the eigenvector to calculate. This parameter is 0-based! Always try “0” first, and if that EV does not seem to reflect A/B compartments, try increasing that value.
per_chromosome – Calculate the eigenvector on a per-chromosome basis (
Trueby default). If your matrix is whole-genome normalised and you know what you are doing, set this toFalseto calculate the EV on the whole matrix.oe_per_chromosome – Use the expected value vector matching each chromosome. Do not modify this unless you know what you are doing.
exclude_chromosomes – List of chromosome names to exclude from the EV calculation. Can sometimes be useful if certain chromosomes do not produce reasonable compartment profiles.
force – Force EV recalculation, even if the EV has already been previously calculated with the same parameters and is stored in the object.
- Returns
 arrayof eigenvector values
- 
enrichment_profile(hic, percentiles=(20.0, 40.0, 60.0, 80.0, 100.0), only_gc=False, symmetric_at=None, exclude_chromosomes=(), intra_chromosomal=True, inter_chromosomal=False, eigenvector=None, collapse_identical_breakpoints=False, *args, **kwargs)¶ Generate a compartment enrichment profile for the compartment matrix.
This returns a
ndarraywith the enrichment profile matrix, and a list of cutoffs used to bin regions according to the eigenvector (EV) values. These cutoffs are determined by thepercentiles argument.The returned objects can be used to generate a saddle plot, for example using
saddle_plot()- Parameters
 hic – A Hi-C matrix
percentiles – The percentiles at which to split the EV, and bin genomic regions accordingly into ranges of EV values.
only_gc – If True, use only the region’s GC content, and not the EV, to calculate the enrichment profile.
symmetric_at – If set to a float, splits the genomic regions into two groups with EV below and above this value. Percentiles are then calculated on each group separately, and it is ensured that the
symmetric_atbreakpoint is in the centre of the enrichment profile. Note that this doubles the number of bins, and that the number of regions to the left and right of the breakpoint are likely not the same.exclude_chromosomes – List of chromosome names to exclude from the profile calculation.
intra_chromosomal – If
True(default), include intra-chromosomal contacts in the calculationinter_chromosomal – If
True, include inter-chromosomal contacts in the calculation. This is disabled by defaults, due to the way matrices are typically normalised (per-chromosome)eigenvector – Optional. A custom eigenvector of the same length as genomic regions in the Hi-C matrix. This will skip the eigenvector calculation and just use the values in this vector instead. In principle, you could even use this to supply a completely different type of data, such as expression values, for the enrichment analysis.
collapse_identical_breakpoints – (experimental) If
True, will merge all breakpoints with the same values (such as multiple bins with EV=0) into one. This can make the saddle plot look cleaner.args – Positional arguments for
eigenvector()kwargs – Keyword arguments for
eigenvector()
- Returns
 a
ndarraywith the enrichment profile matrix, a list of cutoffs
- 
expected_values(selected_chromosome=None, norm=True, *args, **kwargs)¶ Calculate the expected values for genomic contacts at all distances.
This calculates the expected values between genomic regions separated by a specific distance. Expected values are calculated as the average weight of edges between region pairs with the same genomic separation, taking into account unmappable regions.
It will return a tuple with three values: a list of genome-wide intra-chromosomal expected values (list index corresponds to number of separating bins), a dict with chromosome names as keys and intra-chromosomal expected values specific to each chromosome, and a float for inter-chromosomal expected value.
- Parameters
 selected_chromosome – (optional) Chromosome name. If provided, will only return expected values for this chromosome.
norm – If False, will calculate the expected values on the unnormalised matrix.
args – Not used in this context
kwargs – Not used in this context
- Returns
 list of intra-chromosomal expected values, dict of intra-chromosomal expected values by chromosome, inter-chromosomal expected value
- 
expected_values_and_marginals(selected_chromosome=None, norm=True, force=False, *args, **kwargs)¶ Calculate the expected values for genomic contacts at all distances and the whole matrix marginals.
This calculates the expected values between genomic regions separated by a specific distance. Expected values are calculated as the average weight of edges between region pairs with the same genomic separation, taking into account unmappable regions.
It will return a tuple with three values: a list of genome-wide intra-chromosomal expected values (list index corresponds to number of separating bins), a dict with chromosome names as keys and intra-chromosomal expected values specific to each chromosome, and a float for inter-chromosomal expected value.
- Parameters
 selected_chromosome – (optional) Chromosome name. If provided, will only return expected values for this chromosome.
norm – If False, will calculate the expected values on the unnormalised matrix.
args – Not used in this context
kwargs – Not used in this context
- Returns
 list of intra-chromosomal expected values, dict of intra-chromosomal expected values by chromosome, inter-chromosomal expected value
- 
filter(edge_filter, queue=False, log_progress=True)¶ Filter edges in this object by using a
MaskFilter.- Parameters
 edge_filter – Class implementing
MaskFilter.queue – If True, filter will be queued and can be executed along with other queued filters using
run_queued_filters()log_progress – If true, process iterating through all edges will be continuously reported.
- 
find_region(query_regions, _regions_dict=None, _region_ends=None, _chromosomes=None)¶ Find the region that is at the center of a region.
- Parameters
 query_regions – Region selector string, :class:~GenomicRegion, or list of the former
- Returns
 index (or list of indexes) of the region at the center of the query region
- 
flush(silent=False, update_mappability=True)¶ Write data to file and flush buffers.
- Parameters
 silent – do not print flush progress
update_mappability – After writing data, update mappability and expected values
- 
classmethod 
from_hic(hic, file_name=None, tmpdir=None, per_chromosome=True, oe_per_chromosome=None)¶ Generate an AB compartment matrix from a Hi-C object.
- Parameters
 hic – Hi-C object (FAN-C, Juicer, Cooler)
file_name – Path to output file. If not specified, creates file in memory.
tmpdir – Optional. Work in temporary directory until file is closed.
per_chromosome – If
True(default) calculate compartment profile on a per-chromosome basis (recommended). Otherwise calculates profile on the whole matrix - make sure your normalisation is suitable for this (i.e. whole matrix!)oe_per_chromosome – Use the expected value vector matching each chromosome. Do not modify this unless you know what you are doing.
- Returns
 ABCompartmentMatrixobject
- 
get_mask(key)¶ Search _mask table for key and return Mask.
- Parameters
 key (int) – search by mask name
key – search by mask ID
- Returns
 Mask
- 
get_masks(ix)¶ Extract mask IDs encoded in parameter and return masks.
IDs are powers of 2, so a single int field in the table can hold multiple masks by simply adding up the IDs. Similar principle to UNIX chmod (although that uses base 8)
- Parameters
 ix (int) – integer that is the sum of powers of 2. Note that this value is not necessarily itself a power of 2.
- Returns
 list of Masks extracted from ix
- Return type
 list (Mask)
- 
intervals(*args, **kwargs)¶ Alias for region_intervals.
- 
mappable(region=None)¶ Get the mappability of regions in this object.
A “mappable” region has at least one contact to another region in the genome.
- Returns
 arraywhere True means mappable and False unmappable
- 
marginals(masked=True, *args, **kwargs)¶ Get the marginals vector of this Hic matrix.
Sums up all contacts for each bin of the Hi-C matrix. Unmappable regoins will be masked in the returned vector unless the
maskedparameter is set toFalse.By default, corrected matrix entries are summed up. To get uncorrected matrix marginals use
norm=False. Generally, all parameters accepted byedges()are supported.- Parameters
 masked – Use a numpy masked array to mask entries corresponding to unmappable regions
kwargs – Keyword arguments passed to
edges()
- 
matrix(key=None, log=False, default_value=None, mask=True, log_base=2, *args, **kwargs)¶ Assemble a
RegionMatrixfrom region pairs.- Parameters
 key – Matrix selector. See
edges()for all supported key typeslog – If True, log-transform the matrix entries. Also see log_base
log_base – Base of the log transformation. Default: 2; only used when log=True
default_value – (optional) set the default value of matrix entries that have no associated edge/contact
mask – If False, do not mask unmappable regions
args – Positional arguments passed to
regions_and_matrix_entries()kwargs – Keyword arguments passed to
regions_and_matrix_entries()
- Returns
 
- 
classmethod 
merge(matrices, *args, **kwargs)¶ Merge multiple
RegionMatrixContainerobjects.Merging is done by adding the weight of edges in each object.
- Parameters
 matrices – list of
RegionMatrixContainer- Returns
 merged
RegionMatrixContainer
- 
possible_contacts()¶ Calculate the possible number of contacts in the genome.
This calculates the number of potential region pairs in a genome for any possible separation distance, taking into account the existence of unmappable regions.
It will calculate one number for inter-chromosomal pairs, return a list with the number of possible pairs where the list index corresponds to the number of bins separating two regions, and a dictionary of lists for each chromosome.
- Returns
 possible intra-chromosomal pairs, possible intra-chromosomal pairs by chromosome, possible inter-chromosomal pairs
- 
region_bins(*args, **kwargs)¶ Return slice of start and end indices spanned by a region.
- Parameters
 args – provide a
GenomicRegionhere to get the slice of start and end bins of onlythis region. To get the slice over all regions leave this blank.- Returns
 
- 
region_data(key, value=None)¶ Retrieve or add vector-data to this object. If there is existing data in this object with the same name, it will be replaced
- Parameters
 key – Name of the data column
value – vector with region-based data (one entry per region)
- 
region_intervals(region, bins=None, bin_size=None, smoothing_window=None, nan_replacement=None, zero_to_nan=False, score_field='score', *args, **kwargs)¶ Return equally-sized genomic intervals and associated scores.
Use either bins or bin_size argument to control binning.
- Parameters
 region – String or class:~GenomicRegion object denoting the region to be binned
bins – Number of bins to divide the region into
bin_size – Size of each bin (alternative to bins argument)
smoothing_window – Size of window (in bins) to smooth scores over
nan_replacement – NaN values in the scores will be replaced with this value
zero_to_nan – If True, will convert bins with score 0 to NaN
args – Arguments passed to _region_intervals
kwargs – Keyword arguments passed to _region_intervals
- Returns
 iterator of tuples: (start, end, score)
- 
region_subset(region, *args, **kwargs)¶ Takes a class:~GenomicRegion and returns all regions that overlap with the supplied region.
- Parameters
 region – String or class:~GenomicRegion object for which covered bins will be returned.
- 
property 
regions¶ Iterate over genomic regions in this object.
Will return a
GenomicRegionobject in every iteration. Can also be used to get the number of regions by calling len() on the object returned by this method.- Returns
 RegionIter
- 
regions_and_edges(key, *args, **kwargs)¶ Convenient access to regions and edges selected by key.
- Parameters
 key – Edge selector, see
edges()args – Positional arguments passed to
edges()kwargs – Keyword arguments passed to
edges()
- Returns
 list of row regions, list of col regions, iterator over edges
- 
regions_and_matrix_entries(key=None, score_field=None, *args, **kwargs)¶ Convenient access to non-zero matrix entries and associated regions.
- Parameters
 key – Edge key, see
edges()oe – If True, will divide observed values by their expected value at the given distance. False by default
oe_per_chromosome – If True (default), will do a per-chromosome O/E calculation rather than using the whole matrix to obtain expected values
score_field – (optional) any edge attribute that returns a number can be specified here for filling the matrix. Usually this is defined by the
_default_score_fieldattribute of the matrix class.args – Positional arguments passed to
edges()kwargs – Keyword arguments passed to
edges()
- Returns
 list of row regions, list of col regions, iterator over (i, j, weight) tuples
- 
property 
regions_dict¶ Return a dictionary with region index as keys and regions as values.
- Returns
 dict {region.ix: region, …}
- 
static 
regions_identical(pairs)¶ Check if the regions in all objects in the list are identical.
- Parameters
 pairs –
listofRegionBasedobjects- Returns
 True if chromosome, start, and end are identical between all regions in the same list positions.
- 
run_queued_filters(log_progress=True)¶ Run queued filters.
- Parameters
 log_progress – If true, process iterating through all edges will be continuously reported.
- 
scaling_factor(matrix, weight_column=None)¶ Compute the scaling factor to another matrix.
Calculates the ratio between the number of contacts in this Hic object to the number of contacts in another Hic object.
- Parameters
 matrix – A
Hicobjectweight_column – Name of the column to calculate the scaling factor on
- Returns
 float
- 
subset(*regions, **kwargs)¶ Subset a Hic object by specifying one or more subset regions.
- Parameters
 regions – string or GenomicRegion object(s)
kwargs – Supports file_name: destination file name of subset Hic object; tmpdir: if True works in tmp until object is closed additional parameters are passed to
edges()
- Returns
 Hic
- 
to_bed(file_name, subset=None, **kwargs)¶ Export regions as BED file
- Parameters
 file_name – Path of file to write regions to
subset – optional
GenomicRegionor str to write only regions overlapping this regionkwargs – Passed to
write_bed()
- 
to_bigwig(file_name, subset=None, **kwargs)¶ Export regions as BigWig file.
- Parameters
 file_name – Path of file to write regions to
subset – optional
GenomicRegionor str to write only regions overlapping this regionkwargs – Passed to
write_bigwig()
- 
to_gff(file_name, subset=None, **kwargs)¶ Export regions as GFF file
- Parameters
 file_name – Path of file to write regions to
subset – optional
GenomicRegionor str to write only regions overlapping this regionkwargs – Passed to
write_gff()
- 
class