Cooler module¶
-
class
fanc.compatibility.cooler.
CoolerHic
(*args, **kwargs)¶ Bases:
fanc.matrix.RegionMatrixContainer
,cooler.api.Cooler
-
add_contact
(contact, *args, **kwargs)¶ Alias for
add_edge()
- Parameters
contact –
Edge
args – Positional arguments passed to
_add_edge()
kwargs – Keyword arguments passed to
_add_edge()
-
add_contacts
(contacts, *args, **kwargs)¶ Alias for
add_edges()
-
add_edge
(edge, check_nodes_exist=True, *args, **kwargs)¶ Add an edge / contact between two regions to this object.
- Parameters
edge –
Edge
, dict with at least the attributes source and sink, optionally weight, or a list of length 2 (source, sink) or 3 (source, sink, weight).check_nodes_exist – Make sure that there are nodes that match source and sink indexes
args – Positional arguments passed to
_add_edge()
kwargs – Keyword arguments passed to
_add_edge()
-
add_edge_from_dict
(edge, *args, **kwargs)¶ Direct method to add an edge from dict input.
- Parameters
edge – dict with at least the keys “source” and “sink”. Additional keys will be loaded as edge attributes
-
add_edge_from_edge
(edge, *args, **kwargs)¶ Direct method to add an edge from
Edge
input.- Parameters
edge –
Edge
-
add_edge_from_list
(edge, *args, **kwargs)¶ Direct method to add an edge from list or tuple input.
- Parameters
edge – List or tuple. Should be of length 2 (source, sink) or 3 (source, sink, weight)
-
add_edge_simple
(source, sink, weight=None, *args, **kwargs)¶ Direct method to add an edge from
Edge
input.- Parameters
source – Source region index
sink – Sink region index
weight – Weight of the edge
-
add_edges
(edges, *args, **kwargs)¶ Bulk-add edges from a list.
List items can be any of the supported edge types, list, tuple, dict, or
Edge
. Repeatedly callsadd_edge()
, so may be inefficient for large amounts of data.- Parameters
edges – List (or iterator) of edges. See
add_edge()
for details
-
add_region
(region, *args, **kwargs)¶ Add a genomic region to this object.
This method offers some flexibility in the types of objects that can be loaded. See parameters for details.
- Parameters
region – Can be a
GenomicRegion
, a str in the form ‘<chromosome>:<start>-<end>[:<strand>], a dict with at least the fields ‘chromosome’, ‘start’, and ‘end’, optionally ‘ix’, or a list of length 3 (chromosome, start, end) or 4 (ix, chromosome, start, end).
-
static
bin_intervals
(intervals, bins, interval_range=None, smoothing_window=None, nan_replacement=None, zero_to_nan=False)¶ Bin a given set of intervals into a fixed number of bins.
- Parameters
intervals – iterator of tuples (start, end, score)
bins – Number of bins to divide the region into
interval_range – Optional. Tuple (start, end) in base pairs of range of interval to be binned. Useful if intervals argument does not cover to exact genomic range to be binned.
smoothing_window – Size of window (in bins) to smooth scores over
nan_replacement – NaN values in the scores will be replaced with this value
zero_to_nan – If True, will convert bins with score 0 to NaN
- Returns
iterator of tuples: (start, end, score)
-
static
bin_intervals_equidistant
(intervals, bin_size, interval_range=None, smoothing_window=None, nan_replacement=None, zero_to_nan=False)¶ Bin a given set of intervals into bins with a fixed size.
- Parameters
intervals – iterator of tuples (start, end, score)
bin_size – Size of each bin in base pairs
interval_range – Optional. Tuple (start, end) in base pairs of range of interval to be binned. Useful if intervals argument does not cover to exact genomic range to be binned.
smoothing_window – Size of window (in bins) to smooth scores over
nan_replacement – NaN values in the scores will be replaced with this value
zero_to_nan – If True, will convert bins with score 0 to NaN
- Returns
iterator of tuples: (start, end, score)
-
property
bin_size
¶ Return the length of the first region in the dataset.
Assumes all bins have equal size.
- Returns
int
-
binned_regions
(region=None, bins=None, bin_size=None, smoothing_window=None, nan_replacement=None, zero_to_nan=False, *args, **kwargs)¶ Same as region_intervals, but returns
GenomicRegion
objects instead of tuples.- Parameters
region – String or class:~GenomicRegion object denoting the region to be binned
bins – Number of bins to divide the region into
bin_size – Size of each bin (alternative to bins argument)
smoothing_window – Size of window (in bins) to smooth scores over
nan_replacement – NaN values in the scores will be replaced with this value
zero_to_nan – If True, will convert bins with score 0 to NaN
args – Arguments passed to _region_intervals
kwargs – Keyword arguments passed to _region_intervals
- Returns
iterator of
GenomicRegion
objects
-
bins
(**kwargs)¶ Bin table selector
- Returns
- Return type
Table selector
-
bins_to_distance
(bins)¶ Convert fraction of bins to base pairs
- Parameters
bins – float, fraction of bins
- Returns
int, base pairs
-
property
binsize
¶ Resolution in base pairs if uniform else None
-
property
chromnames
¶ List of reference sequence names
-
property
chromosome_bins
¶ Returns a dictionary of chromosomes and the start and end index of the bins they cover.
Returned list is range-compatible, i.e. chromosome bins [0,5] cover chromosomes 1, 2, 3, and 4, not 5.
-
property
chromosome_lengths
¶ Returns a dictionary of chromosomes and their length in bp.
-
chromosomes
()¶ Get a list of chromosome names.
-
chroms
(**kwargs)¶ Chromosome table selector
- Returns
- Return type
Table selector
-
property
chromsizes
¶ Ordered mapping of reference sequences to their lengths in bp
-
close
(remove_tmp=True)¶ Close this Juicer file and run exit operations.
If file was opened with tmpdir in read-only mode: close file and delete temporary copy.
- Parameters
remove_tmp – If False, does not delete temporary copy of file.
-
distance_to_bins
(distance)¶ Convert base pairs to fraction of bins.
- Parameters
distance – distance in base pairs
- Returns
float, distance as fraction of bin size
-
edge_data
(attribute, *args, **kwargs)¶ Iterate over specific edge attribute.
- Parameters
attribute – Name of the attribute, e.g. “weight”
args – Positional arguments passed to
edges()
kwargs – Keyword arguments passed to
edges()
- Returns
iterator over edge attribute
-
edge_subset
(key=None, *args, **kwargs)¶ Get a subset of edges.
This is an alias for
edges()
.- Returns
generator (
Edge
)
-
property
edges
¶ Iterate over contacts / edges.
edges()
is the central function ofRegionPairsContainer
. Here, we will use theHic
implementation for demonstration purposes, but the usage is exactly the same for all compatible objects implementingRegionPairsContainer
, includingJuicerHic
andCoolerHic
.import fanc # file from FAN-C examples hic = fanc.load("output/hic/binned/fanc_example_1mb.hic")
We can easily find the number of edges in the sample
Hic
object:len(hic.edges) # 8695
When used in an iterator context,
edges()
iterates over all edges in theRegionPairsContainer
:for edge in hic.edges: # do something with edge print(edge) # 42--42; bias: 5.797788472650082e-05; sink_node: chr18:42000001-43000000; source_node: chr18:42000001-43000000; weight: 0.12291311562018173 # 24--28; bias: 6.496381719803623e-05; sink_node: chr18:28000001-29000000; source_node: chr18:24000001-25000000; weight: 0.025205961072838057 # 5--76; bias: 0.00010230955745211447; sink_node: chr18:76000001-77000000; source_node: chr18:5000001-6000000; weight: 0.00961709840049876 # 66--68; bias: 8.248432587969082e-05; sink_node: chr18:68000001-69000000; source_node: chr18:66000001-67000000; weight: 0.03876763316345468 # ...
Calling
edges()
as a method has the same effect:# note the '()' for edge in hic.edges(): # do something with edge print(edge) # 42--42; bias: 5.797788472650082e-05; sink_node: chr18:42000001-43000000; source_node: chr18:42000001-43000000; weight: 0.12291311562018173 # 24--28; bias: 6.496381719803623e-05; sink_node: chr18:28000001-29000000; source_node: chr18:24000001-25000000; weight: 0.025205961072838057 # 5--76; bias: 0.00010230955745211447; sink_node: chr18:76000001-77000000; source_node: chr18:5000001-6000000; weight: 0.00961709840049876 # 66--68; bias: 8.248432587969082e-05; sink_node: chr18:68000001-69000000; source_node: chr18:66000001-67000000; weight: 0.03876763316345468 # ...
Rather than iterate over all edges in the object, we can select only a subset. If the key is a string or a
GenomicRegion
, all non-zero edges connecting the region described by the key to any other region are returned. If the key is a tuple of strings orGenomicRegion
, only edges between the two regions are returned.# select all edges between chromosome 19 # and any other region: for edge in hic.edges("chr19"): print(edge) # 49--106; bias: 0.00026372303696871666; sink_node: chr19:27000001-28000000; source_node: chr18:49000001-50000000; weight: 0.003692122517562033 # 6--82; bias: 0.00021923129703834945; sink_node: chr19:3000001-4000000; source_node: chr18:6000001-7000000; weight: 0.0008769251881533978 # 47--107; bias: 0.00012820949175399097; sink_node: chr19:28000001-29000000; source_node: chr18:47000001-48000000; weight: 0.0015385139010478917 # 38--112; bias: 0.0001493344481069762; sink_node: chr19:33000001-34000000; source_node: chr18:38000001-39000000; weight: 0.0005973377924279048 # ... # select all edges that are only on # chromosome 19 for edge in hic.edges(('chr19', 'chr19')): print(edge) # 90--116; bias: 0.00021173151730025176; sink_node: chr19:37000001-38000000; source_node: chr19:11000001-12000000; weight: 0.009104455243910825 # 135--135; bias: 0.00018003890596887822; sink_node: chr19:56000001-57000000; source_node: chr19:56000001-57000000; weight: 0.10028167062466517 # 123--123; bias: 0.00011063368998965993; sink_node: chr19:44000001-45000000; source_node: chr19:44000001-45000000; weight: 0.1386240135570439 # 92--93; bias: 0.00040851066434864896; sink_node: chr19:14000001-15000000; source_node: chr19:13000001-14000000; weight: 0.10090213409411629 # ... # select inter-chromosomal edges # between chromosomes 18 and 19 for edge in hic.edges(('chr18', 'chr19')): print(edge) # 49--106; bias: 0.00026372303696871666; sink_node: chr19:27000001-28000000; source_node: chr18:49000001-50000000; weight: 0.003692122517562033 # 6--82; bias: 0.00021923129703834945; sink_node: chr19:3000001-4000000; source_node: chr18:6000001-7000000; weight: 0.0008769251881533978 # 47--107; bias: 0.00012820949175399097; sink_node: chr19:28000001-29000000; source_node: chr18:47000001-48000000; weight: 0.0015385139010478917 # 38--112; bias: 0.0001493344481069762; sink_node: chr19:33000001-34000000; source_node: chr18:38000001-39000000; weight: 0.0005973377924279048 # ...
By default,
edges()
will retrieve all edge attributes, which can be slow when iterating over a lot of edges. This is why all file-based FAN-CRegionPairsContainer
objects support lazy loading, where attributes are only read on demand.for edge in hic.edges('chr18', lazy=True): print(edge.source, edge.sink, edge.weight, edge) # 42 42 0.12291311562018173 <fanc.matrix.LazyEdge for row /edges/chrpair_0_0.row (Row), pointing to row #0> # 24 28 0.025205961072838057 <fanc.matrix.LazyEdge for row /edges/chrpair_0_0.row (Row), pointing to row #1> # 5 76 0.00961709840049876 <fanc.matrix.LazyEdge for row /edges/chrpair_0_0.row (Row), pointing to row #2> # 66 68 0.03876763316345468 <fanc.matrix.LazyEdge for row /edges/chrpair_0_0.row (Row), pointing to row #3> # ...
Warning
The lazy iterator reuses the
LazyEdge
object in every iteration, and overwrites theLazyEdge
attributes. Therefore do not use lazy iterators if you need to store edge objects for later access. For example, the following code works as expectedlist(hic.edges())
, with allEdge
objects stored in the list, while this codelist(hic.edges(lazy=True))
will result in a list of identicalLazyEdge
objects. Always ensure you do all edge processing in the loop when working with lazy iterators!When working with normalised contact frequencies, such as obtained through matrix balancing in the example above,
edges()
automatically returns normalised edge weights. In addition, thebias
attribute will (typically) have a value different from 1.When you are interested in the raw contact frequency, use the
norm=False
parameter:for edge in hic.edges('chr18', lazy=True, norm=False): print(edge.source, edge.sink, edge.weight) # 42 42 2120.0 # 24 28 388.0 # 5 76 94.0 # 66 68 470.0 # ...
You can also choose to omit all intra- or inter-chromosomal edges using
intra_chromosomal=False
orinter_chromosomal=False
, respectively.- Returns
Iterator over
Edge
or equivalent.
-
edges_dict
(*args, **kwargs)¶ Edges iterator with access by bracket notation.
This iterator always returns unnormalised edges.
- Returns
dict or dict-like iterator
-
expected_values
(selected_chromosome=None, norm=True, *args, **kwargs)¶ Calculate the expected values for genomic contacts at all distances.
This calculates the expected values between genomic regions separated by a specific distance. Expected values are calculated as the average weight of edges between region pairs with the same genomic separation, taking into account unmappable regions.
It will return a tuple with three values: a list of genome-wide intra-chromosomal expected values (list index corresponds to number of separating bins), a dict with chromosome names as keys and intra-chromosomal expected values specific to each chromosome, and a float for inter-chromosomal expected value.
- Parameters
selected_chromosome – (optional) Chromosome name. If provided, will only return expected values for this chromosome.
norm – If False, will calculate the expected values on the unnormalised matrix.
args – Not used in this context
kwargs – Not used in this context
- Returns
list of intra-chromosomal expected values, dict of intra-chromosomal expected values by chromosome, inter-chromosomal expected value
-
expected_values_and_marginals
(selected_chromosome=None, norm=True, *args, **kwargs)¶ Calculate the expected values for genomic contacts at all distances and the whole matrix marginals.
This calculates the expected values between genomic regions separated by a specific distance. Expected values are calculated as the average weight of edges between region pairs with the same genomic separation, taking into account unmappable regions.
It will return a tuple with three values: a list of genome-wide intra-chromosomal expected values (list index corresponds to number of separating bins), a dict with chromosome names as keys and intra-chromosomal expected values specific to each chromosome, and a float for inter-chromosomal expected value.
- Parameters
selected_chromosome – (optional) Chromosome name. If provided, will only return expected values for this chromosome.
norm – If False, will calculate the expected values on the unnormalised matrix.
args – Not used in this context
kwargs – Not used in this context
- Returns
list of intra-chromosomal expected values, dict of intra-chromosomal expected values by chromosome, inter-chromosomal expected value
-
extent
(region)¶ Bin IDs containing the left and right ends of a genomic region
- Parameters
region (str or tuple) – Genomic range
- Returns
- Return type
2-tuple of ints
Examples
>>> c.extent('chr3') (1311, 2131)
-
find_region
(query_regions, _regions_dict=None, _region_ends=None, _chromosomes=None)¶ Find the region that is at the center of a region.
- Parameters
query_regions – Region selector string, :class:~GenomicRegion, or list of the former
- Returns
index (or list of indexes) of the region at the center of the query region
-
property
info
¶ File information and metadata
- Returns
- Return type
dict
-
intervals
(*args, **kwargs)¶ Alias for region_intervals.
-
mappable
(region=None)¶ Get the mappability vector of this matrix.
-
marginals
(masked=True, *args, **kwargs)¶ Get the marginals vector of this Hic matrix.
Sums up all contacts for each bin of the Hi-C matrix. Unmappable regoins will be masked in the returned vector unless the
masked
parameter is set toFalse
.By default, corrected matrix entries are summed up. To get uncorrected matrix marginals use
norm=False
. Generally, all parameters accepted byedges()
are supported.- Parameters
masked – Use a numpy masked array to mask entries corresponding to unmappable regions
kwargs – Keyword arguments passed to
edges()
-
matrix
(key=None, log=False, default_value=None, mask=True, log_base=2, *args, **kwargs)¶ Assemble a
RegionMatrix
from region pairs.- Parameters
key – Matrix selector. See
edges()
for all supported key typeslog – If True, log-transform the matrix entries. Also see log_base
log_base – Base of the log transformation. Default: 2; only used when log=True
default_value – (optional) set the default value of matrix entries that have no associated edge/contact
mask – If False, do not mask unmappable regions
args – Positional arguments passed to
regions_and_matrix_entries()
kwargs – Keyword arguments passed to
regions_and_matrix_entries()
- Returns
-
classmethod
merge
(pairs, *args, **kwargs)¶ Merge two or more
RegionPairsContainer
objects.- Parameters
pairs –
list
ofRegionPairsContainer
args – Positional arguments passed to constructor of this class
kwargs – Keyword arguments passed to constructor of this class
-
offset
(region)¶ Bin ID containing the left end of a genomic region
- Parameters
region (str or tuple) – Genomic range
- Returns
- Return type
int
Examples
>>> c.offset('chr3') 1311
-
open
(mode='r', **kwargs)¶ Open the HDF5 group containing the Cooler with
h5py
Functions as a context manager. Any
open_kws
passed during construction are ignored.- Parameters
mode (str, optional [default: 'r']) –
'r'
(readonly)'r+'
or'a'
(read/write)
Notes
For other parameters, see
h5py.File
.
-
pixels
(join=False, **kwargs)¶ Pixel table selector
- Parameters
join (bool, optional) – Whether to expand bin ID columns into chrom, start, and end columns. Default is
False
.- Returns
- Return type
Table selector
-
possible_contacts
()¶ Calculate the possible number of contacts in the genome.
This calculates the number of potential region pairs in a genome for any possible separation distance, taking into account the existence of unmappable regions.
It will calculate one number for inter-chromosomal pairs, return a list with the number of possible pairs where the list index corresponds to the number of bins separating two regions, and a dictionary of lists for each chromosome.
- Returns
possible intra-chromosomal pairs, possible intra-chromosomal pairs by chromosome, possible inter-chromosomal pairs
-
region_bins
(*args, **kwargs)¶ Return slice of start and end indices spanned by a region.
- Parameters
args – provide a
GenomicRegion
here to get the slice of start and end bins of onlythis region. To get the slice over all regions leave this blank.- Returns
-
region_intervals
(region, bins=None, bin_size=None, smoothing_window=None, nan_replacement=None, zero_to_nan=False, score_field='score', *args, **kwargs)¶ Return equally-sized genomic intervals and associated scores.
Use either bins or bin_size argument to control binning.
- Parameters
region – String or class:~GenomicRegion object denoting the region to be binned
bins – Number of bins to divide the region into
bin_size – Size of each bin (alternative to bins argument)
smoothing_window – Size of window (in bins) to smooth scores over
nan_replacement – NaN values in the scores will be replaced with this value
zero_to_nan – If True, will convert bins with score 0 to NaN
args – Arguments passed to _region_intervals
kwargs – Keyword arguments passed to _region_intervals
- Returns
iterator of tuples: (start, end, score)
-
region_subset
(region, *args, **kwargs)¶ Takes a class:~GenomicRegion and returns all regions that overlap with the supplied region.
- Parameters
region – String or class:~GenomicRegion object for which covered bins will be returned.
-
property
regions
¶ Iterate over genomic regions in this object.
Will return a
GenomicRegion
object in every iteration. Can also be used to get the number of regions by calling len() on the object returned by this method.- Returns
RegionIter
-
regions_and_edges
(key, *args, **kwargs)¶ Convenient access to regions and edges selected by key.
- Parameters
key – Edge selector, see
edges()
args – Positional arguments passed to
edges()
kwargs – Keyword arguments passed to
edges()
- Returns
list of row regions, list of col regions, iterator over edges
-
regions_and_matrix_entries
(key=None, score_field=None, *args, **kwargs)¶ Convenient access to non-zero matrix entries and associated regions.
- Parameters
key – Edge key, see
edges()
oe – If True, will divide observed values by their expected value at the given distance. False by default
oe_per_chromosome – If True (default), will do a per-chromosome O/E calculation rather than using the whole matrix to obtain expected values
score_field – (optional) any edge attribute that returns a number can be specified here for filling the matrix. Usually this is defined by the
_default_score_field
attribute of the matrix class.args – Positional arguments passed to
edges()
kwargs – Keyword arguments passed to
edges()
- Returns
list of row regions, list of col regions, iterator over (i, j, weight) tuples
-
property
regions_dict
¶ Return a dictionary with region index as keys and regions as values.
- Returns
dict {region.ix: region, …}
-
static
regions_identical
(pairs)¶ Check if the regions in all objects in the list are identical.
- Parameters
pairs –
list
ofRegionBased
objects- Returns
True if chromosome, start, and end are identical between all regions in the same list positions.
-
scaling_factor
(matrix, weight_column=None)¶ Compute the scaling factor to another matrix.
Calculates the ratio between the number of contacts in this Hic object to the number of contacts in another Hic object.
- Parameters
matrix – A
Hic
objectweight_column – Name of the column to calculate the scaling factor on
- Returns
float
-
property
storage_mode
¶ Indicates whether ordinary sparse matrix encoding is used (
"square"
) or whether a symmetric matrix is encoded by storing only the upper triangular elements ("symmetric-upper"
).
-
to_bed
(file_name, subset=None, **kwargs)¶ Export regions as BED file
- Parameters
file_name – Path of file to write regions to
subset – optional
GenomicRegion
or str to write only regions overlapping this regionkwargs – Passed to
write_bed()
-
to_bigwig
(file_name, subset=None, **kwargs)¶ Export regions as BigWig file.
- Parameters
file_name – Path of file to write regions to
subset – optional
GenomicRegion
or str to write only regions overlapping this regionkwargs – Passed to
write_bigwig()
-
to_gff
(file_name, subset=None, **kwargs)¶ Export regions as GFF file
- Parameters
file_name – Path of file to write regions to
subset – optional
GenomicRegion
or str to write only regions overlapping this regionkwargs – Passed to
write_gff()
-
-
class
fanc.compatibility.cooler.
LazyCoolerRegion
(series, ix=None)¶ Bases:
genomic_regions.regions.GenomicRegion
-
as_bed_line
(score_field='score', name_field='name')¶ Return a representation of this object as line in a BED file.
- Parameters
score_field – name of the attribute to be used in the ‘score’ field of the BED line
name_field – name of the attribute to be used in the ‘name’ field of the BED line
- Returns
str
-
as_gff_line
(source_field='source', feature_field='feature', score_field='score', frame_field='frame', float_format='.2e')¶ Return a representation of this object as line in a GFF file.
- Parameters
source_field – name of the attribute to be used in the ‘source’ field of the GFF line
feature_field – name of the attribute to be used in the ‘feature’ field of the GFF line
score_field – name of the attribute to be used in the ‘score’ field of the GFF line
frame_field – name of the attribute to be used in the ‘frame’ field of the GFF line
float_format – Formatting string for the float fields
- Returns
str
-
property
attributes
¶ Return all visible attributes of this
GenomicRegion
.Returns all attribute names that do not start with an underscore. :return: list of attribute names
-
property
center
¶ Return the center coordinate of the
GenomicRegion
.- Returns
float
-
contains
(region)¶ Check if the specified region is completely contained in this region.
- Parameters
region –
GenomicRegion
object or string
-
copy
()¶ Return a (shallow) copy of this
GenomicRegion
- Returns
GenomicRegion
-
expand
(absolute=None, relative=None, absolute_left=0, absolute_right=0, relative_left=0.0, relative_right=0.0, copy=True, from_center=False)¶ Expand this region by a relative or an absolute amount.
- Parameters
absolute – Absolute amount in base pairs by which to expand the region represented by this
GenomicRegion
object on both sides. New region start will be <old start - absolute>, new region end will be <old end + absolute>relative – Relative amount as fraction of region by which to expand the region represented by this
GenomicRegion
object on both sides. New region start will be <old start - relative*len(self)>, new region end will be <old end + relative*(len(self)>absolute_left – Absolute amount in base pairs by which to expand the region represented by this
GenomicRegion
object on the left sideabsolute_right – Absolute amount in base pairs by which to expand the region represented by this
GenomicRegion
object on the right siderelative_left – Relative amount in base pairs by which to expand the region represented by this
GenomicRegion
object on the left siderelative_right – Relative amount in base pairs by which to expand the region represented by this
GenomicRegion
object on the right sidecopy – If True, return a copy of the original region, if False will modify the existing region in place
from_center – If True measures distance from center rather than start and end of the old region
- Returns
GenomicRegion
-
property
five_prime
¶ Return the position of the 5’ end of this
GenomicRegion
on the reference.- Returns
int
-
fix_chromosome
(copy=False)¶ Change chromosome representation from chr<NN> to <NN> or vice versa.
- Parameters
copy – If True, make copy of region, otherwise will modify existing region in place.
- Returns
GenomicRegion
-
classmethod
from_string
(region_string)¶ Convert a string into a
GenomicRegion
.This is a very useful convenience function to quickly define a
GenomicRegion
object from a descriptor string. Numbers can be abbreviated as ‘12k’, ‘1.5M’, etc.- Parameters
region_string – A string of the form <chromosome>[:<start>-<end>[:<strand>]] (with square brackets indicating optional parts of the string). If any optional part of the string is omitted, intuitive defaults will be chosen.
- Returns
GenomicRegion
-
is_forward
()¶ Return True if this region is on the forward strand of the reference genome.
- Returns
True if on ‘+’ strand, False otherwise.
-
is_reverse
()¶ Return True if this region is on the reverse strand of the reference genome.
- Returns
True if on ‘-‘ strand, False otherwise.
-
overlap
(region)¶ Return the overlap in base pairs between this region and another region.
- Parameters
region –
GenomicRegion
to find overlap for- Returns
overlap as int in base pairs
-
overlaps
(region)¶ Check if this region overlaps with the specified region.
- Parameters
region –
GenomicRegion
object or string
-
set_attribute
(attribute, value)¶ Safely set an attribute on the
GenomicRegion
object.This automatically decodes bytes objects into UTF-8 strings. If you do not care about this, you can also use region.<attribute> = <value> directly.
- Parameters
attribute – Name of the attribute to be set
value – Value of the attribute to be set
-
property
strand_string
¶ Return the ‘strand’ attribute as string.
- Returns
strand as str (‘+’, ‘-‘, or ‘.’)
-
property
three_prime
¶ Return the position of the 3’ end of this
GenomicRegion
on the reference.- Returns
int
-
to_string
()¶ Convert this
GenomicRegion
to its string representation.- Returns
str
-
-
fanc.compatibility.cooler.
to_cooler
(hic, path, balance=True, multires=True, resolutions=None, n_zooms=10, threads=1, chunksize=100000, max_resolution=5000000, natural_order=True, chromosomes=None, **kwargs)¶ Export Hi-C data as Cooler file.
Only contacts that have not been filtered are exported. https://github.com/mirnylab/cooler/
Single resolution files: If input Hi-C matrix is uncorrected, the uncorrected matrix is stored. If it is corrected, the uncorrected matrix is stored along with bias vector. Cooler always calculates corrected matrix on-the-fly from the uncorrected matrix and the bias vector.
Multi-resolution files (default):
- Parameters
hic – Hi-C file in any compatible (RegionMatrixContainer) format
path – Output path for cooler file
balance – Include bias vector in cooler output (single res) or perform iterative correction (multi res)
multires – Generate a multi-resolution cooler file
resolutions – Resolutions in bp (int) for multi-resolution cooler output
chunksize – Number of pixels processed at a time in cooler
kwargs – Additional arguments passed to cooler.iterative_correction